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ELIMINATION OF QUANTIFIERS 
FOR MODULES 

BY 

WALTER BAUR* 

ABSTRACT 

Every first-order formula in the language of R-modules (R an associative ring) 
is equivalent relative to the theory of R-modules to a boolean combination of 
positive primitive formulas and V::i-sentence. 

0. Introduction 

Let R be an arbitrary associative ring with 1, and let L~ be the language of left 

R-modules.  (For details concerning LR see, e.g., Eklof-Sabbagh [3]). In the 

following "module"  always means "lef tR module".  Let TR be the LR-theory of 

R -modules. By a positive primitive (p.p.) formula we mean an LR-formula of the 

form :157q~(s )7)where q~(~, ~) is a conjunction of atomic formulas. Formulas 

without free variables are called sentences. 

In this paper we prove the following: 

THEOREM. Every LR-formula is equivalent relative to TR to a boolean combi- 
nation of V3-sentences and positive primitive formulas. 

This Theorem generalizes in a natural way the corresponding result for 

abelian groups (Szmielew [5], see also Eklof-Fisher [2]). If we introduce a new 

n-place predicate symbol R~ for every p.p. formula with n free variables and if 

we adjoin to TR all sentences of the form V~(R~ (~) ~--~ ~ (~)), ~(~)  p.p., then the 

Theorem says that this enlarged theory admits elimination of quantifiers modulo 

certain sentences. 

I would like to thank Ed Fisher for interesting discussions, and suggestions 

concerning the presentation. 

* Supported by Schweizefischer Nationalfonds. 
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I. Proof of the Theorem 

Sabbagh [4] has shown that every LR-sentence is equivalent relative to TR to a 

boolean combination of 'r Therefore  it suffices to prove the 

following weaker statement: 

(*) Every LR-formula is equivalent relative to TR to a boolean combination of 

sentences and p.p. formulas. 

REMARK. Although a slight modification of our proof would give a direct 

proof of the Theorem we prefer to prove (*) only, for reasons of simplicity. 

TERMINOLOGY. Let 8 = (ao, �9 " ", a, ,) be an n-tuple of elements from some 

module M. The set of all p.p. formulas ~O(Xo,-.., x.-l) such that M ~ ~0(d) is 

called the p.p. type of d. An isomorphism between submodules A, A '  of M is 

called positive primitive if M V q~(d) if and only if M ~ q~(f(d)) for every p.p. 

formula ~o 0f) and every d from A. It is easy to see that two n-tuples d, d' realize 

the same p.p. type if and only if there exists a p.p. isomorphism f from the 

submodule generated by the a, 's onto the submodule generated by the a','s such 

that f(a~)= a'i. Whenever  we are given n-tuples d, d'  realizing the same p.p. 

type we will write A for El<, Ra~, A '  for X~<, Ra'~ and a '  for f ( a )  (a E A ). This 

makes sense since f is unique. 

Finally note that all p.p. formulas ~ (s have the following additivity property: 

TR ~- V~, 37(~p (~)&~r (37)--* q~ (s + 37)) and TR ~- Vs (~) ~ ~0 (A~)) for all Z E R. 

In this section we will prove (*) ,'--~dulo the following Lemma whose proof is 

postponed to the next section: 

LEMMA 1. Let d, d' be n-tuples of elements from some module M realizing the 

same p.p. type. Let q~(s y) be a p.p. formula, and let $(s y) be a conjunction of 

negations of p.p. formulas. Then M ~ Z l y ( ~ ( d , y )  & $ ( d , y ) )  if and only if 
M ~ 3y(~,(d ' ,  y) & tk(d', y)). 

LEMMA 2. I f  tWO n-tuples d, d' of elements from some module M realize the 

same p.p. type then they realize the same elementary type. 

PROOF. Replacing M by some elementary extension we may assume that M 

is countably saturated. We construct a Karp-isomorphism between the structures 

(M, d) and (M, d') (see, e.g., Barwise [1]). 

Let f be the unique p.p. isomorphism A ---*A' such that f(a~) = a', and let I be 

the set of all p.p. isomorphisms g _D f between finitely generated submodules of 

M. By symmetry it suffices to show: if g E I and c E M then there exists h E I 

such that g C_ h and c E dora(h). 
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Put B = dom(g)  and let b0,- . . ,  bm-~ be a system of generators for B. Let 

E(Xo,---,x, ,_~,y) be the set of all conjunctions X ( x o , ' " , x m - ~ , y )  of p.p. and 

negated p.p. formulas such that M ~ X(/~ c). By Lemma 1 M ~ ::lyg(g(b), y). 

Therefore,  using saturation, there exists c ' E  M such that (g(/~),c') realizes 

(s y). This implies that (/~, c), (g(/~), c') realize the same p.p. type, and hence 

there exists h E I such that h D g, c E d o m ( h )  and h ( c ) =  c'. 

PROOF OF (*). Let ~,(s be an arbitrary formula. Let F(~) be the set of all 

formulas ~0 (s which are boolean combinations of sentences and p.p. formulas 

such that TRI-~(~)---~O(s By compactness it suffices to show that T =  

TR U{~b(tT)} U {--1 ~p (E)[ ~p (s E F(s is inconsistent, where ~ is an n-tuple of new 

constants. Assume there exists a model (M, ti) of T. Applying Lemma 2 and 

compactness we obtain a sentence a and a conjunction/3(s  of p.p. and negated 

p.p. formulas such that M ~ a  &/3(~i) and TRFa &/3(s 6(s Therefore  

a & f l (s  E F(s hence M ~ --n(a &/3 (~i)), contradiction. 

2. Proof of Lemma I 

We will need two auxiliary results. 

LEMMA 3. Let Mo," �9 ", M~_I be R-modules  and let (Co,. �9 CE-~) E M = 

~ , < k  M,.  I f  M '  is a submodule of M such that the image of  M '  under the natural 

projection zr, : M ~ M,  contains more than k elements for every K < k, then M '  

contains an element (bo ,"  ", bk-1) such that b, ~ c. for all K < k. 

The proof is by induction on k. The case k = 1 is trivial. 

k >1 .  Case 1. M '  infinite 

It is easy to see that there exist an infinite subset S of M'  and a nonempty 

subset I of {0 , . . . ,  k -  1} such that whenever /~ = (bo , "  ", bk-1)~ S and 6 ' =  

(b~, . . - ,  b;,-1) E S, 6~/~ ' ,  then b , ~  b', for all K ~ I and b, = b ' ,= 0 for all K~ L 

Applying the induction hypothesis to 'N = ~),<k.., , ,M. and N ' =  zr(M')where 

zr: M---~ N is the projection we obtain an element b ' =  (b~, . . . ,  b~-a)E M'  such 

that b, ~ c, for all K ~ / .  By adding a suitable element from S to/~'  we get an 

element /~ E M'  satisfying b, ~ c, for all K < k. 

Case 2. M '  finite 

Let m = card (M'). Assume that for every /~ = (bo ,"  ", bk-1)E M'  we have 

b, = c, for some K. 

Put m, = card ((ker 1r,) D M'),  I, = card zrK (M'). Clearly m = mKlK and there- 
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fore mK = m/l, < m/k. Since there are at most m, elements in M '  whose r - th  

coordinate is c, and since M ' =  I,.J,<k~r2~(c,) by assumption, we obtain 

m 
m _--< ~'~ card 7r~'(c,) -< ~'. m, < k ~ =  m, 

~ < k  K'<k 

contradiction. 

LEMMA 4. Let 4, d' be n-tuples of elements from some countably saturated 

module M, and let ~b(s be an arbitrary formula. Assume that for 

all p.p. formulas q~(~,y), M ~ 3 y ( ~ ( t i ,  y)&t/~(ti ,  y)) if and only if 
M ~ 3 y ( q ~ ( t i ' , y )  & tk(ti', y)). If  M~3y~b(d ,  y) then there exist d, e E M such 

that 
i) (ti, d), (ti', e) realize the same p.p. type, 
ii) M ~ ~b(ti, d). 

PROOF. For b ~ M let Eb be the p.p. type of (d, b). By saturation the set 

{Eb [ M t = qJ(d, b)} contains a maximal element Xd, d ~ M. Using the hypothesis 

and saturation again we obtain an element e E M  such that 

Mb~o(d ' ,e )  & ~b(d', e) for all ~00f, y) E Y.d. Let ~0(~, y) be a p.p. formula such 

that M b ~o (ti', e). Arguing as above we see that Ea (ti, y) U {q~ (ti, y)} U {~(tl, y)} 

is consistent. Hence ~(~, y) E Ea, by maximality. Therefore (ti, d) and (ti', e) 

realize the same p.p. type. 

PROOF OF LEMMA 1. We proceett by induction on the number k of conjuncts 

in ~b(~, y). The case k -- 0 is just the hypothesis. Let k > 0 and assume Lemma 1 
to be true for all k '<  k and all n. By symmetry it suffices to show that 

M ~ 3 y ( q ~ ( d , y )  & $(~i, y))implies M ~ 3 y ( ~ ( d ' ,  y) & ~/,(a', y)). 

Therefore let bl E M such that 

(1) M ~ o ( d ,  bl) & ~b(d,b,). 

Furthermore we may assume that M is countably saturated. 

Write qJ(~,y) as A K < k ~ , ( s  ff , (s  p.p. 

Put 

N = { d  ~ MIM~,p(() ,d)} ,  

P. = Mn+'/{(~, d) l M ~ d~. (r d)}, 
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and let q, : M'+~---~ P. be the natural projection. Put P = @ .<k P .  and let Q be 

the image of N under the map M ~  P defined by 

d ~-, (qo((O, d ) ) , . . . ,  qk-,((O, d))). 

Case 1. The image of Q under the projection P ~ P, contains more than k 

elements for each r < k. 

Since ti, 4 '  realize the same p.p. type there exists b E M such that 

M ~ q~(d', b). Applying Lemma 3 (MK = PK, M' = Q) we find d E N such that 

q, (0, d) # q~ (ti ', b) for all K < k, in other words M I = A ~ <k ~ ~, (ti', b - d). Since 

M ~ r  by additivity we conclude M l = : : l y ( r  as 

desired. 

Case 2. There exist h < k ,  h=<k such that the image J of Q under the 

projection P ~ P~ contains exactly h elements. 

Let J '  be the set consisting of those elements p~ E J such that there exists 

d E A n N with q~ ((0, d)) = p~. Let h ' ( -  < h) be the cardinality of J '  and choose 

d o , "  ", dh , -1E A fq N such that {qa((0, d~))[ i < h'} = J' .  

Case 2.1. h - h '  = 0, i.e. J '  = J. We may assume that there exists an element 

b E A such that M t = ~(ci, b). (If A does not contain such an element we can 

adjoin one by applying Lemma 4 with ~p(~, y) as ~(~, y)). The element bl - b lies 

in N, by the additivity of q~ (~, y). Since J '  = J there exists d E A tq N such that 

q,((0, d ) ) =  q~((6, b~-b ) ) .  Therefore if a. = b + d then 

(2) M I = ~b, (0, b~ - a~ ). 

Let X(Xo,'' ", x,, y) be the formula 

~p(Xo," . ,x ._ , ,y)&t/ , , (0 ,  y - x . ) &  A --1 ~ ( ~ , y ) .  
K < k  

By (1) and (2), M 1 = X(ti, a,, bl) and therefore M I = 3yx(d ,  a,, y). Since a, E A, 

the (n + 1)-tuples (a0, �9 �9 ", a,) ,  (a~, �9 �9 a ' )  realize the same p.p. type. (Recall that 

a', is the image of a. under the p.p. isomorphism a~ ~ a 'v(v  < n)). Since X(~, y) 

contains only k -  1 conjuncts being negations of p.p. formulas we conclude 

M ~ : ] y x ( t i ' , a ' , , y ) ,  by induction hypothesis. Let b2~ M such that 

M ~ x ( a ' ,  a ' ,  b:). This means 

M I = ~p (ti', b2) & A ---1 ~b. (ti', b2) and 
*r 
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(3) M ~ tk, (0, b2 - a "). 

It remains to show that M ~ -7 ~ (d', b2). If M ~ ~k, (d', b:) then M ~ ~, (d', a ' )  

by (3) and additivity, hence M ~ ~ (d, a,) ,  and therefore M ~ tp, (d, bl) by (2), 

contradicting (1). 

Case 2.2. h -  h ' > 0 .  We reduce this case to the former by successively 

adjoining elements from M to A and A' .  Clearly it suffices to prove the 

following: There exist d, e E N such that 

i) (d ,d) ,  ( d ' , e )  realize the same p.p. type, 

ii) q~ ((0, d)) E J - J'. 

Let $ ' (Uo,- ' - ,  Uh'-l, y) be the formula 

,p(O,y),~ ^ -1 ~ , , (0 ,y-u , ) .  
i<~h'  

Clearly M ~ ~b'(d0, �9 �9 -, dh,-,, d) if and only if d E N and q~ ((0, d)) ~ J'. Since the 

d,'s lie in A, the (n + h')-tuples (a0, �9 �9 ", a, 1, do,-" -, dh, 1), 

( a~ , . . . ,  a',-l, d~, . - . ,  d~,,-l) realize the same p.p. type. Finally note that t~'(g, y) 

contains only h '  < h =< k conjuncts being negations of p.p. formulas. Combining 

the last two facts with the induction hypothesis and Lemma 4 (with ~k'(a, y) as 

tp(.~, y)) we obtain elements d, e E N satisfying (i) and (ii). This concludes the 

proof of Lemma 1. 

3. Abelian groups 

When dealing with abelian groups we can replace p.p. formulas by formulas 

expressing divisibility. Call a formula ~0 (Xo,-" ", xn t) a d-formula if it is of the 

form Y.~<n k~x~ -- 0 or of the form ::ly(p~y = E~<, k~x~) for some prime p, natural 

number k and integers kv. Combining the elementary Lemma 4.3 from [2] with 

the fact that an embedding between abelian groups preserves p.p. formulas if 

and only if it preserves d-formulas it is easy to see that two n-tuples d, d'  from 

some abelian group M realize the same p.p. type if and only if they realize the 

same d-type. Applying Lemma 2 and compactness as in the proof of (*) we 

obtain the following weak form of Szmielew's elimination-of-quantifier-result: 

Every formula in the language of abelian groups is equivalent relative to the 

theory of abelian groups to a boolean combination of V3-sentences and 

divisibility formulas. 



70 W. BAUR Israel J. Math. 

REFERENCES 

1. J. Barwise, Back and forth through infinitary logic, in Studies in Model Theory (M. D. Morley, 
ed.), MAA Studies in Mathematics, Vol. 8, 1973. 

2. P. C. Eklof and E. R. Fisher, The elementary theory of abelian groups, Ann. Math. Logic 4 
(1972), 115-171. 

3. P. C. Eklof and G. Sabbagh, Model-completions and modules, Ann. Math. Logic 2 (1971), 
251-295. 

4. G. Sabbagh, Aspects logique de la puret~ clans les modules, C. R. Acad. Sci. 271 (1970), 
909-912. 

5. W. Szmielew, Elementary properties of abelian groups, Fund. Math. 41 (1955), 203-271. 

UNIVERSITY OF ZURICH 
FREIESTRASSE 36, SWITZERLAND 


