ELIMINATION OF QUANTIFIERS FOR MODULES

BY WALTER BAUR[†]

ABSTRACT

Every first-order formula in the language of R -modules (R an associative ring) is equivalent relative to the theory of *-modules to a boolean combination of* positive primitive formulas and $\forall \exists$ -sentence.

0. Introduction

Let R be an arbitrary associative ring with 1, and let L_R be the language of left R-modules. (For details concerning L_R see, e.g., Eklof-Sabbagh [3]). In the following "module" always means "leftR module". Let T_R be the L_R -theory of R-modules. By a positive primitive (p.p.) formula we mean an L_R -formula of the form $\exists \vec{v}\varphi(\vec{x}, \vec{v})$ where $\varphi(\vec{x}, \vec{v})$ is a conjunction of atomic formulas. Formulas without free variables are called sentences.

In this paper we prove the following:

THEOREM. Every L_R -formula is equivalent relative to T_R to a boolean combi*nation of V3-sentences and positive primitive formulas.*

This Theorem generalizes in a natural way the corresponding result for abelian groups (Szmielew [5], see also Eklof-Fisher [2]). If we introduce a new n-place predicate symbol R_{φ} for every p.p. formula with n free variables and if we adjoin to T_R all sentences of the form $\forall \vec{x} (R_\varphi(\vec{x}) \leftrightarrow \varphi(\vec{x}))$, $\varphi(\vec{x})$ p.p., then the Theorem says that this enlarged theory admits elimination of quantifiers modulo certain sentences.

I would like to thank Ed Fisher for interesting discussions, and suggestions concerning the presentation.

^{*} Supported by Schweizefischer Nationalfonds.

I. Proof of the Theorem

Sabbagh [4] has shown that every L_R -sentence is equivalent relative to T_R to a boolean combination of $\forall \exists$ -sentences. Therefore it suffices to prove the following weaker statement:

(*) Every L_R -formula is equivalent relative to T_R to a boolean combination of sentences and p.p. formulas.

REMARK. Although a slight modification of our proof would give a direct proof of the Theorem we prefer to prove (*) only, for reasons of simplicity.

TERMINOLOGY. Let $\vec{a} = \langle a_0, \dots, a_{n-1} \rangle$ be an n-tuple of elements from some module M. The set of all p.p. formulas $\varphi(x_0,\dots, x_{n-1})$ such that $M \models \varphi(\vec{a})$ is called the p.p. type of \vec{a} . An isomorphism between submodules A, A' of M is called positive primitive if $M \vDash \varphi(\vec{a})$ if and only if $M \vDash \varphi(f(\vec{a}))$ for every p.p. formula $\varphi(\vec{x})$ and every \vec{a} from A. It is easy to see that two *n*-tuples \vec{a} , \vec{a}' realize the same p.p. type if and only if there exists a p.p. isomorphism f from the submodule generated by the a_i 's onto the submodule generated by the a_i 's such that $f(a_i) = a'_i$. Whenever we are given *n*-tuples \vec{a} , \vec{a}' realizing the same p.p. type we will write A for $\Sigma_{i\leq n}Ra_i$, A' for $\Sigma_{i\leq n}Ra_i'$ and a' for $f(a)$ ($a \in A$). This makes sense since f is unique.

Finally note that all p.p. formulas $\varphi(\vec{x})$ have the following additivity property: $T_R \rightarrow \forall \vec{x}, \vec{y}(\varphi(\vec{x})\&\varphi(\vec{y}) \rightarrow \varphi(\vec{x} + \vec{y}))$ and $T_R \rightarrow \forall \vec{x}(\varphi(\vec{x}) \rightarrow \varphi(\lambda \vec{x}))$ for all $\lambda \in R$.

In this section we will prove $(*)$, \lnot dulo the following Lemma whose proof is postponed to the next section:

LEMMA 1. *Let d, d' be n-tuples of elements from some module M realizing the same p.p. type. Let* $\varphi(\vec{x}, y)$ *be a p.p. formula, and let* $\psi(\vec{x}, y)$ *be a conjunction of negations of p.p. formulas. Then* $M \models \exists y (\varphi(\vec{a}, y) \& \psi(\vec{a}, y))$ *if and only if* $M \vDash \exists y (\varphi(\vec{a}', y) \& \psi(\vec{a}', y)).$

LEMMA 2. *If tWO n-tuples d, d' of elements from some module M realize the same p.p. type then they realize the same elementary type.*

PROOF. Replacing M by some elementary extension we may assume that M is countably saturated. We construct a Karp-isomorphism between the structures $\langle M, \vec{a} \rangle$ and $\langle M, \vec{a}' \rangle$ (see, e.g., Barwise [1]).

Let f be the unique p.p. isomorphism $A \rightarrow A'$ such that $f(a_i) = a'_i$, and let I be the set of all p.p. isomorphisms $g \supseteq f$ between finitely generated submodules of M. By symmetry it suffices to show: if $g \in I$ and $c \in M$ then there exists $h \in I$ such that $g \subseteq h$ and $c \in \text{dom}(h)$.

Put $B = \text{dom}(g)$ and let b_0, \dots, b_{m-1} be a system of generators for B. Let $\Sigma(x_0,\dots,x_{m-1},y)$ be the set of all conjunctions $\chi(x_0,\dots,x_{m-1},y)$ of p.p. and negated p.p. formulas such that $M \models \chi(\vec{b}, c)$. By Lemma 1 $M \models \exists y \chi(g(\vec{b}), y)$. Therefore, using saturation, there exists $c' \in M$ such that $\langle g(\vec{b}), c' \rangle$ realizes $\Sigma(\vec{x}, y)$. This implies that $\langle \vec{b}, c \rangle$, $\langle g(\vec{b}), c' \rangle$ realize the same p.p. type, and hence there exists $h \in I$ such that $h \supseteq g$, $c \in \text{dom}(h)$ and $h(c) = c'$.

PROOF OF (*). Let $\psi(\vec{x})$ be an arbitrary formula. Let $\Gamma(\vec{x})$ be the set of all formulas $\varphi(\vec{x})$ which are boolean combinations of sentences and p.p. formulas such that T_R $\vdash \varphi(\vec{x}) \rightarrow \psi(\vec{x})$. By compactness it suffices to show that $T=$ $T_R \cup \{\psi(\vec{c})\} \cup \{\neg \phi(\vec{c}) | \phi(\vec{x}) \in \Gamma(\vec{x})\}$ is inconsistent, where \vec{c} is an *n*-tuple of new constants. Assume there exists a model $\langle M, \vec{a} \rangle$ of T. Applying Lemma 2 and compactness we obtain a sentence α and a conjunction $\beta(\vec{x})$ of p.p. and negated p.p. formulas such that $M \models \alpha \& \beta(\vec{a})$ and $T_R \models \alpha \& \beta(\vec{x}) \rightarrow \psi(\vec{x})$. Therefore $\alpha \& \beta(\vec{x}) \in \Gamma(\vec{x})$ hence $M \models \neg(\alpha \& \beta(\vec{a}))$, contradiction.

2. Proof of Lemma I

We will need two auxiliary results.

LEMMA 3. Let M_0, \dots, M_{k-1} be R-modules and let $\langle c_0, \dots, c_{k-1} \rangle \in M =$ $\bigoplus_{\kappa<\kappa} M_{\kappa}$. If M' is a submodule of M such that the image of M' under the natural *projection* $\pi_{\kappa}: M \to M_{\kappa}$ *contains more than k elements for every* $\kappa < k$ *, then* M' *contains an element* $\langle b_0, \dots, b_{k-1} \rangle$ *such that* $b_k \neq c_k$ for all $\kappa < k$.

The proof is by induction on k. The case $k = 1$ is trivial.

k >1. Case 1. M' infinite

It is easy to see that there exist an infinite subset S of M' and a nonempty subset I of $\{0, \dots, k-1\}$ such that whenever $\vec{b} = \langle b_0, \dots, b_{k-1} \rangle \in S$ and $\vec{b}' =$ $\langle b'_0, \dots, b'_{k-1} \rangle \in S$, $\vec{b} \neq \vec{b}'$, then $b_{k} \neq b'_{k}$ for all $\kappa \in I$ and $b_{k} = b'_{k} = 0$ for all $\kappa \notin I$. Applying the induction hypothesis to $N = \bigoplus_{k \le k} M_k$ and $N' = \pi(M')$ where $\pi: M \to N$ is the projection we obtain an element $\vec{b}' = \langle b'_0, \dots, b'_{k-1} \rangle \in M'$ such that $b_{\kappa} \neq c_{\kappa}$ for all $\kappa \notin I$. By adding a suitable element from S to \vec{b} ' we get an element $\vec{b} \in M'$ satisfying $b_{\kappa} \neq c_{\kappa}$ for all $\kappa < k$.

Case 2. M' finite

Let $m = \text{card}(M')$. Assume that for every $\vec{b} = \langle b_0, \dots, b_{k-1} \rangle \in M'$ we have $b_{\kappa} = c_{\kappa}$ for some κ .

Put $m_{\kappa} = \text{card}((\ker \pi_{\kappa}) \cap M')$, $l_{\kappa} = \text{card} \pi_{\kappa}(M')$. Clearly $m = m_{\kappa}l_{\kappa}$ and there-

fore $m_k = m/l_k < m/k$. Since there are at most m_k elements in M' whose κ -th coordinate is c, and since $M' = \bigcup_{\kappa \leq k} \pi_{\kappa}^{-1}(c_{\kappa})$ by assumption, we obtain

$$
m \leq \sum_{\kappa < k} \text{card } \pi_{\kappa}^{-1}(c_{\kappa}) \leq \sum_{\kappa < k} m_{\kappa} < k \frac{m}{k} = m,
$$

contradiction.

LEMMA 4. Let \vec{a} , \vec{a}' be n-tuples of elements from some countably saturated *module M, and let* $\psi(\vec{x}, y)$ *be an arbitrary formula. Assume that for all* p.p. formulas $\varphi(\vec{x}, y)$, $M \models \exists y(\varphi(\vec{a}, y) \& \psi(\vec{a}, y))$ *if and only if* $M \models \exists y(\varphi(\vec{a}', y) \& \psi(\vec{a}', y))$. If $M \models \exists y \psi(\vec{a}, y)$ then there exist $d, e \in M$ such *that*

- i) $\langle \vec{a}, d \rangle$, $\langle \vec{a}', e \rangle$ *realize the same p.p. type,*
- ii) $M \models \psi(\vec{a}, d)$.

PROOF. For $b \in M$ let Σ_b be the p.p. type of $\langle \vec{a}, b \rangle$. By saturation the set ${\{\Sigma_b \mid M \models \psi(\vec{a}, b)\}}$ contains a maximal element Σ_d , $d \in M$. Using the hypothesis and saturation again we obtain an element $e \in M$ such that $M \models \varphi(\vec{a}', e) \& \psi(\vec{a}', e)$ for all $\varphi(\vec{x}, y) \in \Sigma_d$. Let $\varphi(\vec{x}, y)$ be a p.p. formula such that $M \vDash \varphi(\vec{a}', e)$. Arguing as above we see that $\Sigma_d(\vec{a}, y) \cup {\varphi(\vec{a}, y)} \cup {\psi(\vec{a}, y)}$ is consistent. Hence $\varphi(\vec{x}, y) \in \Sigma_d$, by maximality. Therefore $\langle \vec{a}, d \rangle$ and $\langle \vec{a}', e \rangle$ realize the same p.p. type.

PROOF OF LEMMA 1. We proceed by induction on the number k of conjuncts in $\psi(\vec{x}, y)$. The case $k = 0$ is just the hypothesis. Let $k > 0$ and assume Lemma 1 to be true for all $k' < k$ and all n. By symmetry it suffices to show that

$$
M \vDash \exists y (\varphi(\vec{a}, y) \& \psi(\vec{a}, y)) \text{ implies } M \vDash \exists y (\varphi(\vec{a}', y) \& \psi(\vec{a}', y)).
$$

Therefore let $b_1 \in M$ such that

(1)
$$
M \vDash \varphi(\vec{a}, b_1) \& \psi(\vec{a}, b_1).
$$

Furthermore we may assume that M is countably saturated.

Write $\psi(\vec{x},y)$ as $\Lambda_{\kappa<\kappa} \to \psi_{\kappa}(\vec{x},y), \psi_{\kappa}(\vec{x},y)$ p.p.

Put

$$
N = \{d \in M \mid M \models \varphi(\vec{0}, d)\},\
$$

$$
P_{\kappa} = M^{n+1}/\{\langle \vec{c}, d \rangle \mid M \models \psi_{\kappa}(\vec{c}, d)\},\
$$

and let $q_k : M^{n+1} \to P_k$ be the natural projection. Put $P = \bigoplus_{k \leq k} P_k$ and let Q be the image of N under the map $M \rightarrow P$ defined by

$$
d \mapsto \langle q_0(\langle \vec{0}, d \rangle), \cdots, q_{k-1}(\langle \vec{0}, d \rangle) \rangle.
$$

Case 1. The image of Q under the projection $P \rightarrow P_{\kappa}$ contains more than k elements for each $\kappa < k$.

Since \vec{a} , \vec{a}' realize the same p.p. type there exists $b \in M$ such that $M \vDash \varphi(\vec{a}', b)$. Applying Lemma 3 ($M_k = P_k$, $M = Q$) we find $d \in N$ such that $q_{\kappa}(\vec{0}, d) \neq q_{\kappa}(\vec{a}', b)$ for all $\kappa < k$, in other words $M \models \Lambda_{\kappa < k} \neg \psi_{\kappa}(\vec{a}', b - d)$. Since $M \models \varphi(\vec{a}', b - d)$ by additivity we conclude $M \models \exists y (\varphi(\vec{a}', y) \& \psi(\vec{a}', y))$ as desired.

Case 2. There exist $\lambda < k$, $h \leq k$ such that the image J of Q under the projection $P \rightarrow P_{\lambda}$ contains exactly h elements.

Let J' be the set consisting of those elements $p_{\lambda} \in J$ such that there exists $d \in A \cap N$ with $q_{\lambda}(\langle \vec{0}, d \rangle) = p_{\lambda}$. Let $h'(\leq h)$ be the cardinality of J' and choose $d_0, \dots, d_{h'-1} \in A \cap N$ such that $\{q_{\lambda}(\langle \vec{0}, d_{i} \rangle) | i < h'\} = J'.$

Case 2.1. $h - h' = 0$, i.e. $J' = J$. We may assume that there exists an element $b \in A$ such that $M \models \varphi(\vec{a}, b)$. (If A does not contain such an element we can adjoin one by applying Lemma 4 with $\varphi(\vec{x}, y)$ as $\psi(\vec{x}, y)$). The element $b_1 - b$ lies in N, by the additivity of $\varphi(\vec{x}, y)$. Since $J' = J$ there exists $d \in A \cap N$ such that $q_{\lambda}(\langle \vec{0}, d \rangle) = q_{\lambda}(\langle \vec{0}, b_1 - b \rangle)$. Therefore if $a_n = b + d$ then

$$
(2) \t\t\t M \vDash \psi_{\lambda}(\vec{0},b_{1}-a_{n}).
$$

Let $\chi(x_0, \dots, x_n, y)$ be the formula

$$
\varphi(x_0,\dots,x_{n-1},y)\,\&\,\psi_\lambda(\vec{0},y-x_n)\,\&\,\wedge\limits_{\substack{\kappa\leq k\\k\neq\lambda}}^{\kappa\leq k}\negthinspace\negthinspace\psi_\kappa(\vec{x},y).
$$

By (1) and (2), $M \models \chi(\vec{a}, a_n, b_1)$ and therefore $M \models \exists y \chi(\vec{a}, a_n, y)$. Since $a_n \in A$, the $(n + 1)$ -tuples (a_0, \dots, a_n) , (a'_0, \dots, a'_n) realize the same p.p. type. (Recall that a'_n is the image of a_n under the p.p. isomorphism $a_r \mapsto a'_r(\nu < n)$). Since $\chi(\vec{x}, y)$ contains only $k-1$ conjuncts being negations of p.p. formulas we conclude $M \models \exists y \chi(\vec{a}', a'_n, y)$, by induction hypothesis. Let $b_2 \in M$ such that $M \vDash \chi(\vec{a}', a'_n, b_2)$. This means

$$
M \vDash \varphi(\vec{a}', b_2) \& \wedge \neg \psi_{\kappa}(\vec{a}', b_2) \text{ and}
$$

$$
(3) \t\t\t M \vDash \psi_{\lambda}(\vec{0},b_{2}-a_{n}^{\prime}).
$$

It remains to show that $M \vDash \neg \psi_{\lambda}(\vec{a}', b_2)$. If $M \vDash \psi_{\lambda}(\vec{a}', b_2)$ then $M \vDash \psi_{\lambda}(\vec{a}', a'_n)$ by (3) and additivity, hence $M \models \psi_{\lambda}(\vec{a}, a_n)$, and therefore $M \models \psi_{\lambda}(\vec{a}, b_1)$ by (2), contradicting (1).

Case 2.2. $h - h' > 0$. We reduce this case to the former by successively adjoining elements from M to A and A' . Clearly it suffices to prove the following: There exist $d, e \in N$ such that

- i) $\langle \vec{a}, d \rangle$, $\langle \vec{a}', e \rangle$ realize the same p.p. type,
- ii) $q_{\lambda}(\langle \vec{0}, d \rangle) \in J J'$.

Let $\psi'(u_0,\dots, u_{h'-1}, y)$ be the formula

$$
\varphi(\vec{0},y)\,\&\,\underset{i\leq h'}{\wedge}\,\neg\,\psi_{\scriptscriptstyle{\lambda}}(\vec{0},y-u_i).
$$

Clearly $M \vDash \psi'(d_0, \dots, d_{h'-1}, d)$ if and only if $d \in N$ and $q_{\lambda}(\langle \vec{0}, d \rangle) \not\in J'$. Since the d_i 's lie in A, the $(n+h')$ -tuples $\langle a_0, \dots, a_{n-1}, d_0, \dots, d_{h'-1} \rangle$, $\langle a'_0,\dots, a'_{n-1}, d'_0,\dots, d'_{n-1}\rangle$ realize the same p.p. type. Finally note that $\psi'(\vec{u}, y)$ contains only $h' < h \leq k$ conjuncts being negations of p.p. formulas. Combining the last two facts with the induction hypothesis and Lemma 4 (with $\psi'(\vec{u}, y)$ as $\psi(\vec{x}, y)$) we obtain elements $d, e \in N$ satisfying (i) and (ii). This concludes the proof of Lemma 1.

3. Abelian groups

When dealing with abelian groups we can replace p.p. formulas by formulas expressing divisibility. Call a formula $\varphi(x_0,\dots,x_{n-1})$ a d-formula if it is of the form $\Sigma_{\nu \leq n} k_{\nu} x_{\nu} = 0$ or of the form $\exists y (p^k y = \Sigma_{\nu \leq n} k_{\nu} x_{\nu})$ for some prime p, natural number k and integers k_v . Combining the elementary Lemma 4.3 from [2] with the fact that an embedding between abelian groups preserves p.p. formulas if and only if it preserves d -formulas it is easy to see that two n -tuples \vec{a} , \vec{a}' from some abelian group M realize the same p.p. type if and only if they realize the same d -type. Applying Lemma 2 and compactness as in the proof of $(*)$ we obtain the following weak form of Szmielew's elimination-of-quantifier-result:

Every formula in the language of abelian groups is equivalent relative to the theory of abelian groups to a boolean combination of $\forall \exists$ -sentences and divisibility formulas.

REFERENCES

1. J. Barwise, *Back and forth through infinitary logic,* in *Studies in Model Theory* (M. D. Morley, ed.), MAA Studies in Mathematics, Vol. 8, 1973.

2. P. C. Eklof and E. R. Fisher, The *elementary theory of abelian groups,* Ann. Math. Logic 4 (1972), 115-171.

3. P. C. Eklof and G. Sabbagh, *Model-completions and modules,* Ann. Math. Logic 2 (1971), 251-295.

4. G. Sabbagh, Aspects logique de la pureté dans les modules, C. R. Acad. Sci. 271 (1970), 909-912.

5. W. Szmielew, *Elementary properties of abelian groups,* Fund. Math. 41 (1955), 203-271.

UNIVERSITY OF ZURICH

FREIESTRASSE 36, SWITZERLAND